Preview

Педиатрическая фармакология

Расширенный поиск

Витамин D и костный метаболизм при целиакии. Возможности диетической коррекции

https://doi.org/10.15690/pf.v21i4.2790

Аннотация

В обзоре описаны состояние системы витамина D и костный метаболизм при целиакии, механизмы влияния витамина D на состояние слизистой оболочки кишечника, факторы риска, способствующие патологическим изменениям костей при целиакии. Приведены исследования, посвященные оценке минеральной плотности костей, костного метаболизма и статуса витамина D у больных целиакией. Представлены результаты дискуссии о влиянии добавок кальция и витамина D на течение целиакии и состояние костной ткани при этом заболевании.

Об авторах

А. И. Хавкин
НИКИ детства; НИУ БелГУ
Россия

Хавкин Анатолий Ильич, доктор медицинских наук, профессор, заведующий кафедрой гастроэнтерологии и диетологии им. А.В. Мазурина, руководитель Московского областного центра детской гастроэнтерологии и гепатологии НИКИ Минздрава Московской области, профессор кафедры педиатрии с курсом детских хирургических болезней Медицинского института ФГАОУ ВО «Белгородский государственный национальный исследовательский университет»

115093, г. Москва, ул. Большая Серпуховская, 62

тел.: +7 (499) 237-02-23


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



В. П. Новикова
СПбГПМУ
Россия

Новикова Валерия Павловна, д.м.н., профессор

Санкт-Петербург


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Е. И. Кондратьева
НИКИ детства; СибГМУ
Россия

Кондратьева Елена Ивановна, д.м.н., профессор

Москва

Томск


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Е. В. Лошкова
НИКИ детства; СибГМУ
Россия

Лошкова Елена Владимировна, к.м.н.

Москва

Томск


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Г. Н. Янкина
СибГМУ
Россия

Янкина Галина Николаевна, д.м.н.

Томск


Раскрытие интересов:

Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.



Список литературы

1. Vernia F, Valvano M, Longo S, et al. Vitamin D in Inflammatory Bowel Diseases. Mechanisms of Action and Therapeutic Implications. Nutrients. 2022;14(2):269. doi: https://doi.org/10.3390/nu14020269

2. Шуматова Т.А., Коваленко Д.В., Приходченко Н.Г. Витамин D и заболевания кишечника // Международный журнал прикладных и фундаментальных исследований. — 2023. — № 8. — С. 24–28.

3. Габрусская Т.В., Костик М.М., Насыхова Ю.А. и др. Влияние TAQI-генетического полиморфизма гена рецептора витамина D на состояние костного метаболизма у детей с воспалительными заболеваниями кишечника // Педиатр. — 2017. — Т. 8. — № 3. — С. 111–119. — doi: https://doi.org/10.17816/PED83111-115

4. Tazzyman S, Richards N, Trueman AR, et al. Vitamin D associates with improved quality of life in participants with irritable bowel syndrome: outcomes from a pilot trial. BMJ Open Gastroenterol. 2015;2(1):e000052. doi: https://doi.org/10.1136/bmjgast-2015-000052

5. Battistini C, Ballan R, Herkenhoff ME, et al. Vitamin D Modulates Intestinal Microbiota in Inflammatory Bowel Diseases. Int J Mol Sci. 2020;22(1):362. doi: https://doi.org/10.3390/ijms22010362

6. I nfantino C, Francavilla R, Vella A, et al. Role of Vitamin D in Celiac Disease and Inflammatory Bowel Diseases. Nutrients. 2022;14(23):5154. doi: https://doi.org/10.3390/nu14235154

7. Zhu W, Yan J, Zhi C, et al. 1,25(OH)2D3 deficiency-induced gut microbial dysbiosis degrades the colonic mucus barrier in Cyp27b1 knockout mouse model. Gut Pathog. 2019;11:8. doi: https://doi.org/10.1186/s13099-019-0291-z

8. Kühne H, Hause G, Grundmann SM, et al. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr Res. 2016;36(2):184–192. doi: https://doi.org/10.1016/j.nutres.2015.10.005

9. Schäffler H, Herlemann DP, Klinitzke P, et al. Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn’s disease patients, but not in healthy controls. J Dig Dis. 2018;19(4):225–234. doi: https://doi.org/10.1111/1751-2980.12591

10. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci. 2012;1258(1):25–33. doi: https://doi.org/10.1111/j.1749-6632.2012.06538.x

11. Weber G, Heilborn JD, Jimenez CIC, et al. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Investig Dermatol. 2005;124(5):1080–1082. doi: https://doi.org/10.1111/j.0022-202X.2005.23687.x

12. Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A. 1998;95(16):9541–9546. doi: https://doi.org/10.1073/pnas.95.16.9541

13. Gallo RL, Kim KJ, Bernfield M, et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem. 1997;272(20):13088–13093. doi: https://doi.org/10.1074/jbc.272.20.13088

14. Chun RF, Liu PT, Modlin RL, et al. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front Physiol. 2014;5:151. doi: https://doi.org/10.3389/fphys.2014.00151

15. Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25(3):564–572. doi: https://doi.org/10.1681/ASN.2013040355

16. Bikle DD. Vitamin D Regulation of Immune Function. Curr Osteoporos Rep. 2022;20(3):186–193. doi: https://doi.org/10.1007/s11914-022-00732-z

17. Massironi S, Cavalcoli F, Zilli A, et al. Relevance of vitamin D deficiency in patients with chronic autoimmune atrophic gastritis: a prospective study. BMC Gastroenterol. 2018;18(1):172. doi: https://doi.org/10.1186/s12876-018-0901-0

18. Husby S, Koletzko S, Korponay-Szabó IR, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Guidelines for the Diagnosis of Coeliac Disease. J Pediatr Gastroenterol Nutr. 2012;54(1):136–160. doi: https://doi.org/10.1097/ MPG.0b013e31821a23d0

19. Corazza GR, Villanacci V, Zambelli C, et al. Comparison of the interobserver reproducibility with different histologic criteria used in celiac disease. Clin Gastroenterol Hepatol. 2007;5(7):838–843. doi: https://doi.org/10.1016/j.cgh.2007.03.019

20. Andersen DH. Celiac syndrome: The relationship of celiac disease, starch intolerance, and steatorrhea. J Pediatr. 1947;30(5): 564–582. doi: https://doi.org/10.1016/S0022-3476(47)80050-2

21. Nardecchia S, Auricchio R, Discepolo V, Troncone R. Extra-Intestinal Manifestations of Coeliac Disease in Children: Clinical Features and Mechanisms. Front Pediatr. 2019;7:56. doi: https://doi.org/10.3389/fped.2019.00056

22. Salvensen HA, Böe J. Osteomalacia in sprue. Acta Med Scand. 1953;146(4):290–299. doi: https://doi.org/10.1111/j.0954-6820.1953.tb10243.x

23. Melvin KEW, Hepner GW, Bordier P, et al. Calcium metabolism and bone pathology in adult coeliac disease. Q J Med. 1970;39(153):83–113.

24. Vasquez H, Mazure R, Gonzalez D, et al. Risk of fractures in coeliac disease patients: a cross-sectional, case-control study. Am J Gastroenterol. 2000;95(1):183–189. doi: https://doi.org/10.1111/j.1572-0241.2000.01682.x

25. Bianchi ML, Bardella MT. Bone in celiac disease. Osteoporos Int. 2008;19(12):1705–1716. doi: https://doi.org/10.1007/s00198-008-0624-0

26. Krupa-Kozak U. Pathologic bone alterations in celiac disease: Etiology, epidemiology, and treatment. Nutrition. 2014;30(1):16–24. doi: https://doi.org/10.1016/j.nut.2013.05.027

27. Walters JRF, Banks LM, Butcher GP, Fowler CR. Detection of low bone mineral density by dual energy x ray absorptiometry in unsuspected suboptimally treated coeliac disease. Gut. 1995;37(2): 220–224. doi: https://doi.org/10.1136/gut.37.2.220

28. Corazza GR, Di Sario A, Cecchetti L, et al. Influence of pattern of clinical presentation and of gluten-free diet on bone mass and metabolism in adult coeliac disease. Bone. 1996;18(6):525–530. doi: https://doi.org/10.1016/8756-3282(96)00071-3

29. Mazure R, Vazquez H, Gonzalez D, et al. Bone mineral affection in asymptomatic adult patients with coeliac disease. Am J Gastroenterol. 1994;89(12):2130–2134.

30. Sdepanian VL, de Miranda Carvalho CN, de Morais MB, et al. Bone mineral density of the lumbar spine in children and adolescent with celiac disease on a gluten free diet in Săo Paulo, Brazil. J Pediatr Gastroenterol Nutr. 2003;37(5):571–576. doi: https://doi.org/10.1097/00005176-200311000-00013

31. Kavak U, Yuce A, Kocak N, et al. Bone mineral density in children with untreated and treated celiac disease. J Pediatr Gastroenterol Nutr. 2003;37(4):434–436. doi: https://doi.org/10.1097/00005176-200310000-00007

32. Barera G, Beccio S, Proverbio MC, Mora S. Longitudinal changes in bone metabolism and bone mineral content in children with celiac disease during consumption of a gluten-free diet. Am J Clin Nutr. 2004;79(1):148–154. doi: https://doi.org/10.1093/ajcn/79.1.148

33. Tau C, Mautalen C, De Rosa S, et al. Bone mineral density in children with celiac disease: effect of a gluten-free diet. Eur J Clin Nutr. 2006;60(3):358–363. doi: https://doi.org/10.1038/sj.ejcn.1602323

34. Хаустова Г.Г., Банина Т.В., Мухина Ю.Г., Щеплягина Л.С. Дефицит кальция и витамина Д при хронических заболеваниях желудка и тонкой кишки // Доктор.Ру. — 2008. — № 1. — С. 14–18.

35. Motta MEFA, De Faria MEN, Da Silva GAP. Prevalence of low bone mineral density in children and adolescents with celiac disease under treatment. Sao Paulo Med J. 2009;127(5):278–282. doi: https://doi.org/10.1590/s1516-31802009000500006

36. Blazina S, Bratanic N, Campa AS, et al. Bone mineral density and importance of strict gluten-free diet in children and adolescents with celiac disease. Bone. 2010;47(3):598–603. doi: https://doi.org/10.1016/j.bone.2010.06.008

37. Margoni D, Chouliaras G, Duscas G, et al.Bone health in children with celiac disease assessed by dual x-ray absorptiometry: effect of gluten-free diet and predictive value of serum biochemical indices. J Pediatr Gastroenterol Nutr. 2012;54(5):680–684. doi: https://doi.org/10.1097/MPG.0b013e31823f5fc5

38. Кондратьева Е.И., Янкина Г.Н. Целиакия у детей. Спорные вопросы диагностики и лечения // Вопросы детской диетологии. — 2010. — Т. 8. — № 2. — С. 37–42.

39. Янкина Г.Н., Кондратьева Е.И. Алгоритм реабилитации больных с целиакией // Вопросы детской диетологии. — 2012. — Т. 10. — № 2. — С. 15–19.

40. Климов Л.Я., Захарова И.Н., Абрамская Л.М. и др. Витамин D и хронические заболевания кишечника: роль в патогенезе и место в терапии // Практическая медицина. — 2017. — № 5. — С. 59–64.

41. Volkan B, Fettah A, İşlek A, et al. Bone mineral density and vitamin K status in children with celiac disease: Is there a relation? Turk J Gastroenterol. 2018;29(2):215–220. doi: https://doi.org/10.5152/tjg.2018.17451

42. Силин А.В., Сатыго Е.А., Мельникова И.Ю. Состояние костного метаболизма и его влияние на развитие кариеса полости рта у детей, страдающих целиакией // Экспериментальная и клиническая гастроэнтерология. — 2019. — № 1. — С. 103–105. — doi: https://doi.org/10.31146/1682-8658-ecg-161-1-103-105

43. Sun Y, Zhou Q, Tian D, et al. Relationship between vitamin D levels and pediatric celiac disease: a systematic review and meta-analysis. BMC Pediatr. 2024;24(1):185. doi: https://doi.org/10.1186/s12887-024-04688-0

44. Marino M, Galeazzi T, Gesuita R, et al. Differences in Plasma 25-Hydroxyvitamin D Levels at Diagnosis of Celiac Disease and Type 1 Diabetes. Nutrients. 2024;16(5):743. doi: https://doi.org/10.3390/nu16050743

45. Lewis NR, Scott BB. Should patients with ceoliac disease have their bone mineral density measured? Eur J Gastroenterol Hepatol. 2005;17(10):1065–1070. doi: https://doi.org/10.1097/00042737-200510000-00009

46. Pazianas M, Butcher GP, Subhani JM, et al. Calcium absorption and bone mineral density in celiacs after long term treatment with gluten-free diet and adequate calcium intake. Osteoporos Int. 2006;16(1):56–63. doi: https://doi.org/10.1007/s00198-004-1641-2

47. Deressa E, Wammer AC, Falch JA, Jahnsen J. Bone metabolism in patients with newly diagnosed celiac disease. Tidsskr Nor Laegeforen. 2006;126(9):1201–1204.

48. Vilppula A, Kaukinen K, Luostarinen L, et al. Clinical benefit of gluten-free diet in screen-detected older celiac disease patients. BMC Gastroenterol. 2011;11:136–143. doi: https://doi.org/10.1186/1471-230X-11-136

49. Larussa T, Suraci E, Nazionale I, et al. No evidence of circulating autoantibodies against osteoprotegerin in patients with celiac disease. World J Gastroenterol. 2012;18(14):1622–1627. doi: https://doi.org/10.3748/wjg.v18.i14.1622

50. Dong S, Singh TP, Wei X, et al. Protective effect of 1,25-Dihydroxy vitamin D3 on pepsin-trypsin-resistant Gliadin-Induced tight Junction injuries. Dig Dis Sci. 2018;63(1):92–104. doi: https://doi.org/10.1007/s10620-017-4738-0

51. Andrén Aronsson C, Liu X, Norris JM, et al. 25(OH)D levels in infancy is Associated with Celiac Disease Autoimmunity in At-Risk children: a case-control study. Front Nutr. 2021;8:720041. doi: https://doi.org/10.3389/fnut.2021.720041

52. Verma A, Lata K, Khanna A, et al. Study of effect of glutenfree diet on vitamin D levels and bone mineral density in celiac disease patients. J Family Med Prim Care. 2022;11(2):603–607. doi: https://doi.org/10.4103/jfmpc.jfmpc_1190_21

53. O’Malley T, Heuberger R. Vitamin D status and supplementation in pediatric gastrointestinal disease. J Spec Pediatr Nurs. 2011;16(2):140–150. doi: https://doi.org/10.1111/j.1744-6155.2011.00280.x

54. Shree T, Banerjee P, Senapati S. A meta-analysis suggests the association of reduced serum level of vitamin D and T-allele of Fok1 (rs2228570) polymorphism in the vitamin D receptor gene with celiac disease. Front Nutr. 2022;9:996450. doi: https://doi.org/10.3389/fnut.2022.996450

55. Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients. 2024;16(11):1762. doi: https://doi.org/10.3390/nu16111762

56. Skoracka K, Hryhorowicz S, Tovoli F, et al. Genetic, Immunological, Dietary, Gut Microbiota, and Environmental Determinants of Osteoporosis in the Course of Celiac Disease: Which Factor Plays the First Violin in This Orchestra? Calcif Tissue Int. 2024;114(2): 98–109. doi: https://doi.org/10.1007/s00223-023-01155-3

57. Gordon CM, Bachrach LK, Carpenter TO, et al. Bone health in children and adolescents: a symposium at the annual meeting of the Pediatric Academic Societies/Lawson Wilkins Pediatric Endocrine Society, May 2003. Curr Probl Pediatr Adolesc Health Care. 2004;34(6):226–242. doi: https://doi.org/10.1016/j.cppeds.2004.03.001

58. Vestergaard P, Mosekilde L. Fracture risk in patients with celiac disease, Crohn’s disease, and ulcerative colitis: a nationwide follow-up study of 16,416 patients in Denmark. Am J Epidemiol. 2002;156(1):1–10. doi: https://doi.org/10.1093/aje/kwf007

59. Fickling WE, McFarlane XA, Bhalla AK, Robertsonet DAF. The clinical impact of metabolic bone disease in coeliac disease. Postgrad Med J. 2001;77(903):33–36. doi: https://doi.org/10.1136/pmj.77.903.33

60. Thomason K, West J, Logan RF, et al. Fracture experience of patients with coeliac disease: a population based survey. Gut. 2003;52(4):518–522. doi: https://doi.org/10.1136/gut.52.4.518

61. West J, Logan RF, Card TR, et al. Fracture risk in people with celiac disease: a population-based cohort study. Gastroenterol. 2003;125(2):429–436. doi: https://doi.org/10.1016/s0016-5085(03)00891-6

62. Bommu VJL, Mirza L. Osteoporosis can be the sole presentation in celiac disease. Cureus. 2021;13(12):e20602. doi: https://doi.org/10.7759/cureus.20602

63. Di Stefano M, Mengoli C, Bergonzi M, Corazza GR. Bone mass and mineral metabolism alterations in adult celiac disease: pathophysiology and clinical approach. Nutrients. 2013;5(11): 4786–4799. doi: https://doi.org/10.3390/nu5114786

64. Mosca C, Thorsteinsdottir F, Abrahamsen B, et al. Newly diagnosed celiac disease and bone health in young adults: a systematic literature review. Calcif Tissue Int. 2022;110(6):641–648. doi: https://doi.org/10.1007/s00223-021-00938-w

65. Fornari MC, Pedreira S, Niveloni S, et al. Pre- and post-treatment serum levels of cytokines IL-1beta, IL-6, and IL-1 receptor antagonist in celiac disease. Are they related to the associated osteopenia? Am J Gastroenterol. 1998;93(3):413–418. doi: https://doi.org/10.1111/j.1572-0241.1998.00413.x

66. Taranta A, Fortunati D, Longo M, et al. Imbalance of osteoclastogenesis-regulating factors in patients with celiac disease. J Bone Miner Res. 2004;19(7):1112–1121. doi: https://doi.org/10.1359/JBMR.040319

67. Epsley S, Tadros S, Farid A, et al. The effect of inflammation on bone. Front Physiol. 2021;11:511799. doi: https://doi.org/10.3389/fphys.2020.511799

68. Moreno ML, Crusius JBA, Cherñavsky A, et al. The IL-1 gene family and bone involvement in celiac disease. Immunogenetics. 2005;57(8):618–620. doi: https://doi.org/10.1007/s00251-005-0033-x

69. Fernández A, González L, de la Fuente J. Coeliac disease: clinical features in adult populations. Rev Esp Enferm Dig. 2010;102(8):466–471. doi: https://doi.org/10.4321/s1130-01082010000800002

70. Alkalay MJ. Nutrition in patients with lactose malabsorption, celiac disease, and related disorders. Nutrients. 2021;14(1):2. doi: https://doi.org/10.3390/nu14010002

71. Micic D, Rao VL, Semrad CE. Celiac disease and its role in the development of metabolic bone disease. J Clin Densitom. 2020;23(2): 190–199. doi: https://doi.org/10.1016/j.jocd.2019.06.005

72. Harrison JE, Hitchman AJW, Finlay JM, Mcneill KG. Calcium kinetic studies in patients with malabsorption syndrome. Gastroenterology. 1969;56(4):751–757. doi: https://doi.org/10.1016/S0016-5085(69)80037-5

73. Jameson S. Coeliac disease, insulin-like growth factor, bone mineral density, and zinc. Scand J Gastroenterol. 2000;35(8):894–896.

74. Cardo A, Churruca I, Lasa A, et al. Nutritional imbalances in adult celiac patients following a gluten-free diet. Nutrients. 2021;13(8):2877. doi: https://doi.org/10.3390/nu13082877

75. Muñoz-Garach A, García-Fontana B, Muñoz-Torres M. Nutrients and dietary patterns related to osteoporosis. Nutrients. 2020;12(7):1986. doi: https://doi.org/10.3390/nu12071986

76. Unalp-Arida A, Ruhl CE, Choung RS, et al. Lower Prevalence of Celiac Disease and Gluten-Related Disorders in Persons Living in Southern vs Northern Latitudes of the United States. Gastroenterol. 2017;152(8):1922–1932.e2. doi: https://doi.org/10.1053/j.gastro.2017.02.012

77. Ivarsson A, Hernell O, Nyström L, Persson LA. Children born in the summer have increased risk for coeliac disease. J Epidemiol Community Health. 2003;57(1):36–39. doi: https://doi.org/10.1136/jech.57.1.36

78. Sander GR, Cummins AG, Henshall T, Powell BC. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett. 2005;579(21): 4851–4855. doi: https://doi.org/10.1016/j.febslet.2005.07.066

79. Lionetti E, Catassi C. New clues in celiac disease epidemiology, pathogenesis, clinical manifestations, and treatment. Int Rev Immunol. 2011;30(4):219–231. doi: https://doi.org/10.3109/08830185.2011.602443

80. Dewar D, Pereira SP, Ciclitira PJ. The pathogenesis of coeliac disease. Int J Biochem Cell Biol. 2004;36(1):17–24. doi: https://doi.org/10.1016/S1357-2725(03)00239-5

81. Lu C, Zhou W, He X, et al. Vitamin D status and vitamin D receptor genotypes in celiac disease: A meta-analysis. Crit Rev Food Sci Nutr. 2021;61(12):2098–2106. doi: https://doi.org/10.1080/10408398.2020.1772716

82. Ferretti G, Bacchetti T, Masciangelo S, Saturni L. Celiac disease, inflammation and oxidative damage: A nutrigenetic approach. Nutrients. 2012;4(4):243–257. doi: https://doi.org/10.3390/nu4040243

83. Rubio-Tapias A, Hill ID, Kelly CP, et al. ACG clinical guideline: Diagnosis and management of celiac disease. Am J Gastroenterol. 2013;108(5):656–676; quiz 677. doi: https://doi.org/10.1038/ajg.2013.79

84. Ludvigsson JF, Bai JC, Biagi F, et al. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut. 2014;63(8):1210–1228. doi: https://doi.org/10.1136/gutjnl-2013-306578

85. Hill ID, Fasano A, Guandalini S, et al. NASPGHAN clinical report on the diagnosis and treatment of gluten-related disorders. J Pediatr Gastroenterol Nutr. 2016;63(1):156–165. doi: https://doi.org/10.1097/MPG.0000000000001216

86. Saggese G, Vierucci F, Prodam F, et al. Vitamin D in pediatric age: Consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr. 2018;44(1):51. doi: https://doi.org/10.1186/s13052-018-0488-7

87. Kotze LMS, Skare T, Vinholi A, et al. Impact of a glutenfree diet on bone mineral density in celiac patients. Rev Esp Enferm Dig. 2016;108(2):84–88. doi: https://doi.org/10.17235/reed.2015.3953/2015

88. Pantaleoni S, Luchino M, Adriani A, et al. Bone mineral density at diagnosis of celiac disease and after 1 year of gluten-free diet. Sci World J. 2014;2014:173082. doi: https://doi.org/10.1155/2014/173082

89. Corazza GR, Di Sario A, Cecchetti L, et al. Bone mass and metabolism in patients with celiac disease. Gastroenterology. 1995;109(1):122–128. doi: https://doi.org/10.1016/0016-5085(95)90276-7

90. Duerksen DR, Leslie WD. Positive celiac disease serology and reduced bone mineral density in adult women. Can J Gastroenterol. 2010;24(2):103–107. doi: https://doi.org/10.1155/2010/285036

91. Valdimarsson T, Löfman O, Toss G, Ström M. Reversal of osteopenia with diet in adult coeliac disease. Gut. 1996;38(3):322–327. doi: https://doi.org/10.1136/gut.38.3.322

92. Хавкин А.И., Быстрова В.И., Шрайнер Е.В. и др. Целиакия и витаминно-минеральная недостаточность // Вопросы диетологии. — 2024. — Т. 14. — № 1. — С. 54–60. — doi: https://doi.org/10.20953/2224-5448-2024-1-54-60

93. Хавкин А.И., Новикова В.П., Вашура А.Ю., Ковтун Т.А. Ось микробиота-кость: современные представления о механизмах взаимодействия // Вопросы практической педиатрии. — 2022. — Т. 17. — № 5. — С. 66-74. — doi: https://doi.org/10.20953/1817-7646-2022-5-66-74

94. Wang J, Wang Y, Gao W, et al. Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ. 2017;5:e3450. doi: https://doi.org/10.7717/peerj.3450

95. Хавкин А.И., Яблокова Е.А., Шаповалова Н.С., Ерохина М.И. Микробиота кишечника и перспективы применения пробиотиков при целиакии у детей // Архив педиатрии и детской хирургии. — 2024. — Т. 2. — № 1. — С. 121–132. — doi: https://doi.org/10.31146/2949-4664-apps-2-1-121-132

96. Al-Toma A, Herman A, Lems WF, Mulder CJJ. The Dietary and Non-Dietary Management of Osteoporosis in Adult-Onset Celiac Disease: Current Status and Practical Guidance. Nutrients. 2022;14(21):4554. doi: https://doi.org/10.3390/nu14214554


Рецензия

Для цитирования:


Хавкин А.И., Новикова В.П., Кондратьева Е.И., Лошкова Е.В., Янкина Г.Н. Витамин D и костный метаболизм при целиакии. Возможности диетической коррекции. Педиатрическая фармакология. 2024;21(4):375-384. https://doi.org/10.15690/pf.v21i4.2790

For citation:


Khavkin A.I., Novikova V.P., Kondratyeva E.I., Loshkova E.V., Yankina G.N. Vitamin D and Bone Metabolism in Celiac Disease. The Possibilities of Dietary Correction. Pediatric pharmacology. 2024;21(4):375-384. (In Russ.) https://doi.org/10.15690/pf.v21i4.2790

Просмотров: 217


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1727-5776 (Print)
ISSN 2500-3089 (Online)